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Motivation and Summary

How can we improve our models of decision-making of

realistic agents in real-world scenarios?

1. Partially-observable, stochastic environments

2. Cost of information-processing

3. Applicable to both biological and artificial agents
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We propose a novel class of objectives to model 1—3 using
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information-theoretic bounded rationality, and show

how this leads to phenomena like curiosity and cognitive

dissonance minimi

sing behaviour.

Environment and Agent Models

Partially-Observable
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Path Divergence Objective (PDO)

e We assume and generalise Information-Theoretic Bounded
Rationality [Ortega et al., 2015] model, which is related to
Rational Inattention [Sims 2003| and Capacity-limited
Bayesian RL [Arumugam et al., 2024]

o Agent pays a cost for policy (and belief) updates trom a
prior belief about trajectories to a posterior beliet, measured

using the KL divergence:
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Path Divergence Objective

® Intuition: [ is the rationality level or information

processing efhiciency. The divergence term has 3 parts:

DkL {Q(h():TﬂT) | p(h();T)] = — EQ(op.1.a0.737) |PKL [Q(S0:7|00:T, a0.1) || Q(s0.7]a0.T)]]

7

-~

Epistemic Value

+EQ(S():T,@0:T;W) [DKL [Q(O():T|5():T:(l():T) || P(O():T\&():T)H

o

>y

V

Pragmatic Value

+ DkL [Q(Q():T?W) I p((l():T)}

~"

Intention-Behaviour Gap

Demonstration: Value inference under incorrect rationality assumptions

Inference of preferences generally fails without an adequate model of agent's rationality.

Skill-based bandit: A two-armed bandit where one of the arms requires the agent to correctly input 3 bits based on a 3-bit

observation in order to get reward 7. The observer knows that » =1 (direct reward), and 7 is inferred from observing 300

trajectories.
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Reward parameter of the more complex arm (ry)

DO-minimising agents to include varying rationality levels, biased world models, and information-seeking

ing human-Al interactions; “bounded assistance games” (C/RL)

Game theory with PDO-minimising agents - free—energy equilibria as 2 normative and descriptive solution concept.

Mechanism design for boundedly-rational agents to develop incentive structures accounting for limited rationality.
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